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e °) and sc~ can be solved by (II-10) and (II-11) and 
then Rg, can be solved by (II-12). Although the pro- 
cess as shown here is harder than that for the planar- 
surface matching, the 2D periodic non-planar-surface 
matching in principle can be done. In other words, 
the Bloch-wave method can also be applied to all 
kinds of periodic planar- or non-planar-surface 
models. 
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Abstract 

A new iteration method for direct structure retrieval 
starting from the exit plane-wave function qte(r) is 
proposed and tested on models. The imaginary part 
of the potential cannot be retrieved. The effects of 
the limited resolution of qt~(r) as well as neglect of 
high-order Laue-zone effects and the choice of the 
starting potential on the result are discussed. The 
procedure is found to be preferable to that based on 
the subsequent approximation method with respect 
to a higher convergence rate. It is shown that an error 
as low as 10% may be obtained for the real part of 
the retrieved potential up to IcrV(r)tl < 5. 

1. Introduction 

As is well known, the image-formation process in 
high-resolution electron microscopy (HREM) is 
influenced by dynamical scattering effects and distor- 
tions caused by the electron-optical system of the 
microscope. Therefore the image interpretation is 
mostly based on results of computer simulation. If 
the initial structure motif is known (from X-ray analy- 
sis data, for example) or a structure is postulated, the 
matching procedure allows one to refine both the 

* Now on leave: Department of Physics, Arizona State Univer- 
sity, Tempe, AZ 85287-1504, USA. 

structural details and the experimental conditions 
under which the image has been obtained and to 
interpret the images of structure defects as well. 

We should point out some disadvantages of this 
approach. Firstly, the trial-and-error nature of the 
simulation process leads to considerable expense of 
computer time and depends on the experience of the 
researcher. Secondly, it cannot be applied to the 
investigation of unknown structures. 

The elaboration of direct structure-restoration 
methods seems to be attractive in this respect. The 
problem may be treated as consisting of two parts: 

(a) correction for the transfer function of the 
microscope, i.e. restoration of the wave function at 
the exit plane of a crystal from the EM image(s); 

(b) inversion of the dynamical diffraction, i.e. 
restoration of the lattice potential Ve(r) from the exit 
plane wave function. 

The dynamical scattering effects and the influence 
of the electron-optical system are therefore con- 
sidered separately and this makes it possible to find 
independently the most efficient method for the sol- 
ution of each problem. 

Approaches aimed at restoration from the exit 
plane wave function include defocus series processing 
and transmission electron microscopy/scanning 
transmission electron microscopy (TEM/STEM) 
electron holography. Non-linear image processing 
methods have been suggested by Kirkland (1982, 
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1984) for restoration from defocus series affected by 
noise. Their application to a Cu phthalocyanine struc- 
ture has led to a good correlation with image simula- 
tion results and to improvement of interpretable resol- 
ution in the restored wave function. In the linear 
imaging approximation the exit plane wave function 
may be restored by the 'focus variation' method from 
the 3D Fourier analysis of defocus series. These 
include x, y coordinates in the image projection plane 
and defocus as a third coordinate (Van Dyck, 1990). 
The validity domain of this approach, however, still 
needs to be determined. 

Electron off-axis holography (Lichte, 1988; 
Leuchtner, Lichte & Herrmann, 1989; Cowley, 1990) 
takes advantage of the interference between the two 
coherent beams, one of which is scattered by the 
object whereas the second one is passed through the 
vacuum. These beams are created by the Mollenstedt 
biprism inserted in the field-emission gun equipped 
electron microscope. Both the amplitude and the 
phase of the exit plane wave function may be restored 
from the Fourier analysis of the sidebands of a 
hologram. Nearly parallel illumination is used in 
TEM, whereas the two beams are focused in the object 
plane in the STEM case. 

Electron crystallography methods aim at potential 
retrieval directly from a single EM image in a weak- 
phase-object approximation. This approximation, 
however, does not hold in most cases used in HREM. 
Therefore, only the qualitative information (location 
of projected potential peaks but not associated atom 
types) can be retrieved under certain conditions in 
this way (Goodman,  Rae & Tulloch, 1988). 

Less attention has been paid to the inversion of the 
dynamical electron diffraction. Two approaches 
based on the sequential approximation method and 
on the single Bloch-wave approximation have been 
proposed by Van Dyck (1985, 1990). The present 
paper follows the idea of an iterative solution to this 
problem and offers an alternative scheme for projec- 
ted potential retrieval. Preliminary results suggested 
that a scheme was promising (Gribelyuk, 1989). 

2. Method 

The aim of the iteration procedure is to restore the 
lattice potential projection within the unit cell from 
the knowledge of the exit plane wave function. It is 
supposed that lattice parameters, orientation and 
crystal thickness are already determined. 

2.1. Algorithm 

I. The first estimation V~(r) of the potential is 
determined from the following expression: 

exp[-itrV~(r)t]* Pt/2(r) = ~e(r). (1) 

Here r = (x, y) is a 2D vector in the image plane, o- 

is the interaction constant, t is the crystal thickness. 
* denotes a convolution operation. The Fresnel 
propagation function (Cowley, 1975) is 

Pt(r)=(i/At)exp(-i~r2/At).  (2) 

It should be noted that the lattice potential is con- 
sidered here as a complex function. Within the multi- 
slice approach (1) implies that the whole crystal is 
treated as one slice and its potential is projected onto 
the middle plane of the crystal (Van Dyck, 1985). 
The numerical solution o f ( l )  is most easily performed 
in reciprocal space using a convolution theorem. 
Instead of (1), one can use the phase object approxi- 
mation (POA) or 

exp [-itrV~(r)t] * P, ( r )=  g~e(r) (3) 

can be used. The approximation (3) supposes that 
the potential is projected onto the entrance plane of 
the crystal. The choice of the starting approximation 
will be considered in detail in § 4. 

II. At this step an estimation of the  exit plane wave 
function ~ , ( r )  is calculated from the current estima- 
tion of the projected potential V,(r). 

Both Bloch-wave (BW) and multislice (MS) 
m,ethods may be used for this purpose. From a compu- 
tational point of view the desired operating memory 
is approximately proportional to N x N for BW and 
to N for MS with N being the number of reflections 
taken into account. Therefore, the application of the 
BW method is limited to structures with small lattice 
parameters. We aim at elaboration of a restoration 
scheme which may be applicable to any structure, 
including those containing defects. In this respect, 
the fast Fourier transform (FFT) multislice method 
(lshizuka & Ueda, 1977) is preferable and therefore 
was used here. 

In our multislice calculation the crystal is divided 
into k slices Az = t /k  thick. Since only the projected 
potential in the crystal is known all the slices are 
considered as identical. The slice transmission func- 
tion qn(r) is as follows: 

qn(r) =exp  [-itrV,,(r)Az]. (4) 

Applying the basic multislice formula k times 

~ + ' > ( r )  = ~. '~(r)  * Pa~(r), (5) 

one derives the estimation g ' , (r)  at the exit plane. 
Here l = 0, 1, 2 , . . . ,  k - 1, the number of slices passed 
by the wave. 

III. At this step a new estimation of the projected 
potential V,+~(r) is determined from the current esti- 
mations of the exit plane wave function aP',(r) and 
projected potential Vn(r). The following expression 
is proposed: 

~ , ( r )  exp {-i tr[  V ,+ l ( r ) -  V,(r)]t} = ~e(r). (6) 

This is illustrated in Fig. 1. The crystal with the model 
potential Ve(r) is shown on the left and that with 



M. A. GRIBELYUK 717 

estimated V,(r) potential on the right. The model 
wave function at the distance r = t from the exit plane 
B may be written in the small-angle approximation: 

t~ ( r )  = ~ ( r )  * P,(r). (7) 

If one requires the identity of wave functions in the 
A plane in both cases one should suppose that the 
electrons in Fig. l (b)  are travelling from plane B to 
plane A through a region with potential AV, ( r )=  
V,+~(r)-  V,(r). Considering this region as one slice 
and projecting the A V,(r) potential onto the B plane 
one obtains 

"qt(r) = ~ , ( r )  exp [--iGAV,(r)t] • P,(r) 

= ' ~ ( r ) .  (8) 

This expression is equivalent to (6). 
Once the new estimate for the potential is obtained 

step I I is repeated and so on. 
The iterations are stopped when the difference 

between successive values of the potential is smaller 
than a definite threshold. In order to estimate the 
result in a qualitative way one needs the half-tone 
representation of the potential. As a quantitative 
criterion the following expression may be used: 

R = max [I ~ ( r ) / ~ , ( r ) -  ll]. (9) 

It follows from (6) that R is proportional to 
max [AV,(r)] when the latter becomes small. 

2.2. Limitations 

The following problems will be treated below for 
determination of the validity domain of this method. 

An experimental exit plane wave function qSe(r) is 
always known to a certain resolution d = 1/Uo which 
is determined by instabilities and aberrations of the 
microscope. If the ' ideal '  wave function ~e(U) has 
non-zero Fourier coefficients outside the circle u = Uo, 
in reciprocal space the iteration procedure based on 
the matching of wave functions ~ , ( r )  and We(r) will 
lead to a potential different from V~(r), the true poten- 
tial. One should therefore determine the highest 
spatial resolution of the retrieved potential where the 
restoration error does not exceed a certain threshold. 
Numerical estimations of this resolution are presen- 
ted in § 4. 
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Fig. 1. Schematic representation of the iteration formula (6). Crys- 
tals with model Ve(r) and estimated V,(r) potentials are shown 
in (a) and (b), respectively. 

In any iteration method the main problems concern 
convergence rate and uniqueness of a solution. It is 
clear from the multislice expression (5) that inversion 
of dynamical diffraction is in general not unique: 
many different V(r) functions are solutions of (5). 
The first approximation of the potential V~(r) is of 
critical importance in this respect; the procedure will 
converge to a solution which is tile nearest to V~(r). 
The best available approximation (1), however, is 
rather limited relating to near phase objects. Our goal 
therefore is to specify the maximum object thickness 
up to which the proposed procedure still converges 
to a true solution. Uniqueness conditions are dis- 
cussed in § 2.2.2 and a structure-independent criterion 
for estimation of the validity domain is proposed. 
These limits will be determined in § 4 on the basis of 
model calculations if (1) is used for the first approxi- 
mation of potential V~(r). In addition, alternative 
expressions for V~(r) are tested in § 4 against conver- 
gence rate. 

As can be seen from (1) and (6), both V:(r) and 
A V,(r) can be derived only in the projection approxi- 
mation. The exit plane wave function qt~(r) depends, 
however, on the full 3D potential Ve(r, z). Therefore 
the restored potential V(r) will differ from the projec- 
ted true potential Ve(r): 

Ve(r) = c-: ~ V~(r, z) dz. (10) 

Here c is a lattice constant in the incident-beam 
direction. A full-scale estimation of HOLZ effects 
would require a multislice calculation of ~'~(r) where 
slice projected potentials are derived from the full 
3D potential Ve(r, z) in the unit cell. The potential 
V(r) should be restored from such a ~ ( r )  and com- 
pared with a true projected potential V~(r). Instead 
only the upper limit of the associated restoration error 
is estimated in § 4. 

2.2.1. Spatial resolution. Let We(r) be known to 
d = 1/Uo spatial resolution, i.e. in reciprocal space 

qte(u) = ~e(u)A(u)  

a(u) = {10 [ul-< no 
I"1 > Uo. 

Here ~ ( u )  is the ' ideal '  exit plane wave function, 
A(u) is the effective aperture function, d = 1/Uo is the 
spatial resolution. Since it is impossible to estimate 
the influence of this ' t runcation'  effect on the potential 
in a general way, let us consider this problem in the 
phase-object approximation. If one expands 

~e(u) = F{exp[io'Ve(r) t]}  

=~(u) - - iGV~(u) t+(Gt)2 /2[  Ve(u)* Ve(u)] 

- (cr t )3 /6[Ve(u)* V~(u)* V~(u)]+. . .  (11) 

and leaves only the first two terms in the case ~o(u) = 
[o'Ve(u)t[ < 1 it becomes clear that the potential will 
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change in the same way as the wave function: 

V(u) = {oe(U) ,u, <- Uo (12) 
lul > no. 

If three terms are left in (11) the ' truncation'  would 
require 

-itrV(u)t+(o't)2/2[V(u) * V(u)] = 0  

Vu: lul> no. (13) 

This results in the distortion of the whole Ve(u) 
Fourier spectrum. The more terms that are essential 
in (11), the greater is the influence of the ' truncation'  
effect on the potential. The mixed terms of the g(u') = 
V(u') V ( u - u ' )  type become large for lul > Uo under 
either u ' ~  0 or [u-u '[  ~ 0 that results in a minimum 
in the intermediate region. 

It follows from (4) and (6) that the Fourier spec- 
trum of exp [itrV~(r)t] and of exp [-itrAV,(r)t] are 
limited by lul < Uo and lul < 2no, respectively. Thus, 
the best achievable spatial resolution of the restored 
potential is d = l / u o  and corresponds to ¢ ( u ) . ~ l .  
However, ~(u) > 1 in most practical cases, so in calcu- 
lations (§ 4) the restored potential has been calculated 
with a number of different spatial resolution values 
and compared with the Ve(r) model potential which 
was restricted to the same resolution. In this way the 
highest spatial resolution was found for which the 
given accuracy of restoration is guaranteed. 

2.2.2. Uniqueness of inversion. The condition is 
given below under which (6) adequately describes 
the scattering process. Expression (6) may be 
obtained from the exact equation 

{qn(r) exp [- i t rA Vn(r)Az] * Paz(r)}qn(r) 

x exp [-itrAV,(r)Az] . . . . =  Oe(r ). (14) 

If the correction term AV,(r) is small enough that 
propagation effects are not essential" 

1/' In (r) exp [- i t rA V,(r)t]q,(r) * Pat(r) 

=[O~,( r )qn(r )*  Pa~(r)]exp[-itrAV~(r)t] (15) 

for all ! values. Here O~n(r) denotes the electron wave 
function corresponding to potential V,(r) after pass- 
ing l slices. The better the first approximation Vt(r) 
the smaller the correction term AV,(r). As is known, 

a = max [~(r)]  (16) 

may be considered as a figure of merit of the deviation 
of an exit plane wave function from the POA. This 
value will indicate the quality of the first approxima- 
tion. Meanwhile, a is universal in the sense that 
potential, crystal thickness and the wavelength are 
combined. Therefore, determination of the validity 
domain of the method is performed in § 4 as a func- 
tion of a. We expect that the results of this analysis 

will not be unduly dependent on the choice of model. 
In the evaluation of a we consider the projected 
potential Ve(r) to be known to d = 0.1 nm resolution. 
It will be shown that if the condition (15) fails the 
procedure may keep converging but the result does 
not necessarily correspond to the true potential (§ 4). 
This feature reveals that the solution of the direct 
problem is not unique with this method. 

3. Program and structure model 

The convergency check has been carried out on the 
hypothetical model of the UMosOI6 oxide shown in 
Fig. 2. The structure is comprised of MoO 6 octahedra, 
elongated along the a and c axes. Octahedra are 
linked by corners within blocks, forming an ReO3-1ike 
structure. Each block is p = 2 octahedra thick in the 
b-axis direction. The neighbouring blocks are linked 
by alternating U-O and Mo-O rows, elongated in the 
c-axis direction. The structure is orthorhombic with 
lattice constants a = 0.74, b = 1.004, c = 0.4115 nm. 
The model exit plane wave function Oe(r) has been 
calculated in the (001) structure projection by the 
multislice method. The model potential Ve(r) has 
been previously averaged over the c distance so that 
the occupancy factor for each cation within two slices 
of Az = 0.2057 nm thick has been set to 0.5. O atoms 
have not been taken into account. The elastic absorp- 
tion has been introduced in the following way: 
Im[fMo(h)]=0"lfMo(h) ,  Im[ fu (h ) ]=0"19 fu (h )  for 
all the h reciprocal-lattice vectors. Here fu(h)  and 
fMo(h) denote the electron atomic scattering ampli- 
tudes for U and Mo cations, respectively. The Fourier 
coefficients Ve(h) have been calculated for all [hi < 
40nm -~. Two 100kV model wave functions O~(r) 
have been calculated, i.e. for crystal thicknesses t~ = 
1-2345 and t2 = 2.0575 nm. All the beams within the 
I h l < 2 0 n m - '  circle have been included but after 
multislicing the Fourier spectrum of Oe(r) has been 
cut to Ihl< 10nm -~ simulating the restricted resol- 
ution of the experimental wave function. 

Fig. 2. Structure model of UMosOI6 viewed along [001]. • U; 
MoO 6 octahedron. The unit cell is shown. 
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The computer program for structure retrieval has 
been written in FortranlV and installed on the 
IBM/370 operated under MVS. Expressions (1) and 
(6) have been used for calculation of successive 
potential estimations. Each iteration took 3 min CPU 
time for the complex FFT array size of 128x 128 
pixels and the six slices thick crystal, i.e. 20 s per slice 
in the multislice calculations. 

4 .  R e s u l t s  

As was pointed out, the cutting of the exit plane 
wave-function Fourier spectrum ~ ( r )  leads to distor- 
tion of the corresponding potential V,,(r). This effect 
is illustrated below for the UMo50~6 structure. Firstly 
the 100 kV transmission function t~(r), 

t~(r) = e x p  [- io 'Ve(r) t] ,  

was calculated for crystal thickness t =2.0575 nm, 
after which its Fourier spectrum was cut as follows: 

Q(u) lul-< 10nm -~ 
Q(u)= 0 lul> 10nm -l. 

The potential V(r) was calculated from the Q(u) 
transmission function with spatial resolution d = 0.1, 
0"2, 0.3 nm, respectively, and compared with Ve(r). 
In Fig. 3 the relative error between V(r) and the 

(a) 

(b) ~.: "'. 

_ _ :i: :." . _ 3  ~i~ 2/~ 

Fig. 3. Influence of  the ' t runcat ion '  effect on the retrieved potential .  
The relative error  Ar near  (a)  U and (b) Mo is shown as a 
funct ion o f  resolut ion o f  the potential  d: d = 0.1 (curve 1), 0.2 
(curve 2), 0.3 (curve 3) nm. 

corresponding Ve(r) function near the cation sites 
along A - A  (Fig. 2) is shown. Hereafter the origin 
was placed at the cation site. The Ar and Aim values 
are as follows: 

Ar = IRe [ V(r)] /Re [ Ve(r)]-  11 × 100% 

Aim = Ilm [ V(r)]/lm [ Ve(r ) ] -  II x 100%. 

It can be seen that there is no strong correlation 
between Ar and the atomic scattering amplitude 
values. Actually, the A~ value for U cations may be 
both higher (curve 1) and lower (curves 2, 3) than 
that of Mo. The relative error A~ becomes smaller for 
lower resolution, although not linearly. The cutoff 
procedure is equivalent to an effective absorption. 
The imaginary part of the potential is responsible for 
this effect and increases two-three times near the 
atomic sites. 

The restored potential for the t --- 1.2345 nm thick 
crystal is presented in Fig. 4 as a function of spatial 
resolution after ten iterations. This thickness corre- 
sponds to three unit cells and to ce = 2.4. Expression 
(1) has been used for the first estimation; in iterations 
the crystal has been divided into six slices each Az = 
0"2057 nm thick for calculation of ~ , ( r ) .  The real 
part of the retrieved potential deviates from the true 
values of the model potential by not more than 5% 
near the atomic sites, with the spatial resolution of 
the potential d > 0.2 nm. The iteration process con- 
verges rather fast: after only four iterations the Ar 
values varied within 0.1% (Fig. 4d). As can be seen 
from Fig. 4(e), the imaginary part cannot be restored 
due to the restricted resolution of the ~,,(r) wave 
function. The real and imaginary parts of the potential 
are coupled in this method, therefore the accuracy of 
the Re [ V,,(r)] restoration cannot be made infinitely 
high for lower resolution. It should be mentioned that 
this result may be improved if the first estimation 
Im [V~(r)] is found from 

Im[  V~(r)] = fl Re [ Vl(r)] (17) 

with the fl parameter set to 0.15. 
Now let us consider how the retrieved potential 

will vary if the first estimations are found from (3) 
or from the POA. 

All three approximations lead to almost the same 
result (AAr =0"1%) near the Mo sites if the spatial 
resolution of the potential d > 0.2 nm. As should have 
been expected, the difference is larger near U sites 
(Fig. 5a). Expression (1) provides the best estimation 
of the retrieved potential (real part, curve 3). The 
POA and (3) lead to almost the same result (curve 
2) which differs from the best one by AA~ = 0.3%. 
Fig. 5(b) shows that the convergence is rather close 
for all approximations. One needs only one-two less 
iterations with (1) to achieve the same result as with 
(3) or the POA. Figs. 5(c), (d) reveal that approxima- 
tion (1) does not necessarily provide the best 
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Fig. 4. Retrieved potential after ten iterations for a =2 .4  as a 
function of spatial resolution d. Relative error Ar at U site for 
(a) d = 0 . 1 n m  and (b) d = 0 . 2  (curve 2), 0.3 (curve 1)nm. 
Relative error A, at Mo for (c) d =0.2  (curve 2), 
0.3 (curve 1) nm. (d) Convergence rate for iteration formulae 
(18) (curve 1) and (6) (curve 2). See expression (9) for definition 
of  R,. (e) Relative error Aim at U for d- -0 .1  (curve 1), 0.2 
(curve 2), 0.3 (curve 3) nm. 

Fig. 5. Effect of the starting approximation on the retrieved poten- 
tial (a = 2.4, spatial resolution d = 0-2 nm). (a) Relative re.~tor- 
ation error A r at U after ten iterations. (b) Convergence rate. 
Relative error A r at (c) U and (d) Mo after the first iteration. 
Curve l, POA; curve 2, expression (3); curve 3, expression (1). 
Curves l and 2 nearly coincide in (a);  Ar <0"5% for expression 
(1) in (c). 
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est imation of the real part Re [ Vl(r)] of  the potential 
compared with those of (3) and POA. This is not 
inconsistent,  however, because (1) gives the best 
est imation of the full potential ,  but not of  each part 
separately. 

Thus, one may apply any of  the ment ioned approxi-  
mations for thin crystals or structures formed by light 
atoms (a  <2 .5) .  In other cases approximat ion  (1) is 
preferable. 

Recently another  iteration formula was proposed 
(Van Dyck, 1985): 

exp [- icrV,+,(r) t ] -exp [-icrV,,(r)t] 

= kVe(r)- qr,(r). (18) 

This is s imilar  to the sequential  approximat ions  
method of searching for f ( x ) =  x equation roots if 
one sets 

x , , + ,  = e x p  [-icrV.+,(r)t] 

f ( x , )  = ~ e ( r ) -  ~ , ( r )  + x , .  
(19) 

The sign in the exponent  has been changed to the 
opposite one in compar ison with the original because 
here and in Van Dyck (1985) different expressions 
for the incident  plane wave have been used [see sign 
conventions in Self, O 'Keefe ,  Buseck & Spargo 
(1983)]. This procedure enables the retrieval of  the 
structure potential of  an SiF4 crystal with t < 1.6 nm 
(o~ < 1-5). Both the model  wave function and its esti- 
mations have been calculated by the real-space 
method (Van Dyck, 1985). The sequential  approxima-  
tions method requires that initial est imation should 
be close enough to the true solution. Estimating the 
validity domain  of (18) we appl ied it to a 1-2 nm thick 
crystal of  UMo50~6, which corresponds to a = 2.4. 
Our calculations reveal that (18) still provides reliable 
restoration results. The restoration errors are almost 
on the same scale as (6), but the convergence rate of  
(18) is lower (Fig. 4d).  

As has been mentioned,  the assumption of equal 
slices in the multislice calculations of the wave func- 
tion qt,,(r) may cause a restoration error, i.e. the 
difference between restored potential V(r) and the 
true projected potential Ve(r). One needs a full 
V,(r, z) potential ,  but not its projection V,,(r) in a 
crystal for accurate analysis.  

We aim at est imation of an upper limit of  resto- 
ration errors which result from neglect of  HOLZ 
effects. For this purpose we created an artificial non- 
uniform distr ibution of  potential  in a 1.2 nm thick 
UMosO~6 crystal along z, the beam direction, in the 
following way. The unit cell of  UMosO~6 was divided 
into two slices in the (001) projection. The U and Mo 
atoms between octahedral  blocks as well as ha l f  of  
the Mo atoms in blocks were set in the upper  slice 
with the other Mo atoms in the bottom one. In evalu- 
ation of the slice projection potential only those atoms 
which were located in the slice were taken into 

account. Therefore,  a step-like potential distr ibution 
along the z direction for each atom in the unit cell 
was assumed;  it has non-zero values only in one of 
two slices within the unit cell. Apparent ly,  the 
difference between projected potential distr ibutions 
of  two slices is larger here than in the original model  
(Fig. 2). The projected potential  Ve(r) within the unit 
cell remains,  however, the same as before. The 100 kV 
model wave function was calculated for the crystal 
thickness t = 1.2345 nm with the final spatial resolu- 
tion d = 0.1 nm. The restoration of potential  from 
such a model  led to an error as low as A A , < 8 . 5 %  
near atom sites (Fig. 6). This error is apparent ly  larger 
than the actual error resulting from neglection of 
HOLZ effects and becomes less for structures formed 
by light atoms. 

Thus, the method allows one to retrieve the real 
part of the potential  with an error of  less than 10% 
if a <2 .5 .  

Let us estimate the range of a values that guaran- 
tees convergence to the true result with this method.  
For this purpose, i terations have been performed with 
the model wave function calculated for the 2.0575 nm 
thick crystal ( a = 4 . 6 ) .  The slice thickness A z =  
0.2057 nm was used for both the model wave function 
~,.(r) and its est imations ~ , ( r ) .  

The V~(r) potential est imation obtained from (1) 
does not correlate with the model  potential (Fig. 7a):  
its real part has a m i n i m u m  instead of a peak at U 
sites. Estimations qt, (r) converge rapidly to the model  
wave function ~,~(r). Nevertheless,  the restored 
potential V(r) remains as far from the model  Ve(r) 
as the first approximat ion  V~(r). This feature proves 
that the solution of the direct problem is not unique 
with this method. The condit ion (15) has not been 
satisfied in this case, so the V,,(r) est imations con- 
verged to one of the ' false '  solutions. 

Thus, the requirement  that the correction value has 
to be small imposes serious restrictions on the validity 
domain  of the procedure. 

"&r ."/c 

-_~ c.1 0.:~ 15 r. ['( 

Fig. 6. Upper limit of the restoration error resulting from neglect 
of HOLZ effects. Relative error A, at U as a function of 
spatial resolution of potential d is shown: d =0.2 (curve 1), 
0.3 (curve 2) nm. 
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The following explanation may be proposed for 
the failure of (15). The difference between the estima- 
tion V,(r) and the model potential Ve(r) is caused by 
incomplete treatment of dynamical scattering effects 
in (1). Within the multislice method this means that 
the first approximation treats the crystal as consisting 
of one slice; an exact solution corresponds to a fine 
slicing of a crystal. For multislice calculation of 1/', (r) 
very thin slices (Az --0"2057 nm) were used whereas 
the potential V,(r) was obtained from ~e(r) in 
a 'one-slice' approximation (1). Therefore, large 
differences can be expected between ~,(r)  and gt~(r), 
i.e. the condition (14) must have already failed in the 
evaluation of V2(r). 

To make this difference smaller we proceed in the 
following way. Once the first approximation V,(r) is 
found a crystal is divided into two slices and iterations 
are performed until convergence of ~ . ( r )  and gt~(r) 
is achieved. At the next step a crystal is divided into 
three slices and iterations are repeated etc. Mean- 
while, the difference A(r )=  g t . ( r ) -  ~ ( r )  is smaller 
at each step with respect to previous iterations so the 
condition (15) may be satisfied. We expect conver- 
gence of potential estimation V,(r) to a true solution 
V~(r) as a slice thickness Az is decreased (or a number 
of slices is increased). 

Results of the potential retrieval are shown in Figs. 
7(b), (c). The crystal was subsequently subdivided 
into n = 1, 2, 3, 4, 6, 10 slices. At each stage iterations 
were performed until the desired R < 0.001 accuracy 
was achieved between ~ . ( r )  and WiVe(r ) [see (9)]. Note 
that g' ,(r) denotes here the result of iterations if a 
crystal is divided into n slices for multislice calcula- 
tion. The estimation of Im [V,(r)] has been found 
from (17). An accuracy of the retrieved potential as 
high as Ar < 10% was achieved near atomic sites after 
73 iterations if one considers a potential calculated 
with spatial resolution d > 0.2 nm. The imaginary part 
of the potential cannot be retrieved. It should be 
noted that if the estimation of Im [ V,(r)] is found 
from (1) (both real and imaginary parts), the accuracy 
of the retrieval becomes lower: Ar < 17%. The calcula- 
tions reveal that such an accuracy is preserved until 
a < 5. The restoration error grows quickly for a > 5 
with this method. 

The next problem concerns the optimum spatial 
resolution to which the estimation gt,(r) should be 
calculated by the multislice method. The finite num- 
ber of beams in the multislice calculation introduces 
wrap-around errors in the estimated wave function. 
Until now the resolution of gt,(r) has been restricted 
to d = 0 . 1  nm, i.e. to the spatial resolution of the 
model wave function g'e(r). The reason for such a 
restriction was the distortion of slice transmission 
function q(r) by the 'truncation' effect of aP'e(r). It is 
important to estimate the relationship between these 
two effects and to check whether the multislicing with 
higher resolution and subsequent cutoff to d = 0.1 nm 

could lead to a better result for the restoration 
procedure. 

The multislice calculations of ~ , ( r )  were initially 
performed with u < 20 nm- '  and the estimated wave 
function was restricted after that to u < 10 nm -! 
before applying the iteration formula (6). The model 
wave function derived earlier for the 2.0575 nm thick 
crystal was used. The result of restoration was worse 
in this case than that presented in Fig. 7. This proves 
that the 'truncation' effect of ~e(r) affects the esti- 
mated wave function more than wrap-around errors 
d o .  

Thus, the calculation of gt. (r) should be performed 
with the same spatial resolution as the 'experimental' 
wave function is known. 

(a) [vr 
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. . . . . . . . .  ~ T.~ 
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(b) j ar,% 
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Fig. 7. Potential retrieval for a = 4-6. (a)  True profile of  Re [ Ve(r) ] 
(curve 1) and its first estimation (curve 2) at U. Relative error 
Ar at (b) U and (c) Mo after 73 iterations as a function of  spatial 
resolution of  the potential d: d = 0.2 (curve 1); 0.3 (curve 2) nm. 
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Abstract 

Planarity of some atomic groups is one of the impor- 
tant stereochemical features of a model under 
refinement. A planarity restraint is usually included 
in the functional to be minimized. A new method of 
analytical calculation of the exalet gradient value is 
suggested for the standard function [Schomaker, 
Waser, Marsh & Bergman (1959). Acta Cryst. 12, 
600-604] which controls planarity in the most direct 
way. This approach makes it possible to refine the 
optimum plane orientation at the same time as atomic 
coordinates. 

I. Introduction 

The procedure for atomic model refinement in protein 
crystallography is (or may be reduced to) a minimiz- 
ation of some functional. This functional is usually 
a sum of simple criteria, each of which is responsible 
for a special type of restraint. One of the most impor- 
tant stereochemical restraints imposed on a number 
of atomic groups is a planarity restraint. It usually 
consists of items of the same type, each of which is 
a function of the coordinates of the atoms which 
should lie on the plane. The function value increases 
with planarity distortion. 

Various approaches are known to define such a 
function. In one of them planarity is controlled by 
means of bond lengths, bond angles etc. (Waser, 1963; 
Levitt & Lifson, 1969; Hermans & McQueen, 1974; 
Ten Eyck, Weaver & Matthews, 1976; Chambers & 

Stroud, 1977). Another method is the introduction of 
one (Dodson, Isaacs & Rollett, 1976) or two (French, 
1975; Tomlin, 1987) dummy atoms at a distance from 
the best plane through a group of atoms and changing 
the distances between atoms of the group and the 
dummy atoms. The third approach (used, for 
example, in a program by Hendrickson & Konnert, 
1980) is based on the calculation of a root-mean- 
square deviation of atoms from the best plane 
(Schomaker et al., 1959). This approach seems the 
most suitable of the three, since the two others define 
planarity requirements in a less direct way and are 
not always effective (the latter was demonstrated by 
Haneef, Moss, Stanford & Borkakoti, 1985). But one 
should keep in mind when dealing with the last 
method that it requires the calculation of the best 
plane parameters. Usually, they are determined with 
the iterative procedure of Frazer, Duncan & Collar 
(1938), and the best plane orientation is difficult to 
refine. To avoid the problem of the choice of the best 
plane, Haneef et al. (1985) suggested a new variant 
of this approach that does not need optimal plane 
parameters and makes use of a very simple criterion. 

In spite of the evident advantages, the criterion of 
Haneef et al. (1985) has an important feature: it 
distorts the atomic group, forcing atoms to move 
towards the centre of the group. This effect is 
explained in the present work. Of course, other func- 
tionals, e.g. bond-length restraints, prevents the group 
from collapsing, but we could not then clearly recog- 
nize which functional is responsible for planarity only 
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